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Equilibrium B-limit in stellarators is unknown

B-limit probably determined by the equilibrium, not its stability. [P Helander et al, PPCF, 2012]
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» Possible degradiation of flux-surfaces at high £.

. 05 - <B>=5%
» Need for a robust, reliable, and fast code. - =
E oL
Ongoing parallel efforts:
‘0-5} <p>=1%
> HINT [Y. Suzukietal, NF, 2006] L
> SIESTA [S. Hirshman et al, Pol, 2011] Jl; I
» SPEC [S. Hudson et al, PoP, 2012] [M. Drevlak et al, NF, 2005]

SPEC follows the “equilibrium philosophy”, namely it addresses the question:
What is the equilibrium magnetic field that is consistent with the

established equilibrium pressure and toroidal current profiles?

My philosophy to approach an understanding of 3-limits:

Use numerical experiments to gquide our theories towards a distilling of the physics
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Stepped-Pressure Equilibrium Code (SPEC)

Uses variational principle to find

equilibria with islands:
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Consider /=2 stellarator with simple pressure pedestal

Boundary
Consider a rotating-ellipse stellarator:
- Ideal B-limit scaling:
R(0,p) = Ropo+cosf+0.25cos (6 — Npp) N2
Z(0,p) = —sinf+0.25sin (6 — N,p) B~ et~ R—é)o

[Freidberg, Ideal MHD, 2014]

Pressure vs Flux

> Simplest model of a pedestal () P,
» 2 maximally-relaxed force-free volumes P
»  SPEC naturally describes this system 0,20
,=
» VMEC can be used with steep-but-not-stepped pressure — b
l~I-’a l'IJedge
Current vs Flux Transform vs Flux
A ZERO-NET-CURRENT A FIXED-IOTA
. Ledge
»  Zero-net-toroidal-current L ® »  Local control on transform
L ®
»  No control on transform »  No control on current
=0 u=0 >  Expecti# >  Expect surface current
LIJa ll',edge | l-IJa LI)edge
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Zero-net-current versus Fixed-iota

ZERO-NET-CURRENT ' FIXED-IOTA

v V V V

Shafranov shift increases with 3 in both cases.
A, increases faster for the zero-net-current stellarator.
A separatrix forms at 3 = 0.4% in the zero-net-current stellarator.

Islands and chaos emerge at 3 = 1.4% in the fixed-iota stellarator.
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Expected scaling of B, s is reproduced in all cases
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> In all cases, 35 scales as expected in ideal-MHD.

» Small amount of current provides access to higher {3.
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HBS theory explains macroscopic differences
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HBS theory explains macroscopic differences

ZERO-NET-CURRENT - FIXED-IOTA

Ideal MHD: no (3-limit
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HBS theory explains macroscopic differences

ZERO-NET-CURRENT

FIXED-IOTA

Ideal MHD: Biim = €4 t2 ~ 0.4%
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Fractal dimension of field-lines increases with
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A theory for the non-ideal B-limit

Expect that chaos emerges due to the overlaping of islands. [Chirikov, Phys Reports, 1979]

Expected island width due to a resonance is: [Boozer, Rev Mod Phys, 2004]

w ~ /By [ (m#')

As 3 increases, I, increases and modifies the rotational transform.

Hypothesis: islands and chaos will emerge when:

t1(B) ~ o

namely when

perturbations in the
poloidal field due to ~v
toroidal current

vacuum
poloidal field

Inserting ansatz in HBS theory for the current,
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Conclusions and perspectives

» Basic study of equilbrium (-limit indicates that
1. Macroscopic features behave as predicted by ideal-MHD
2. Zero-net-current stellarator behaves “ideally”

3. Fixed-iota stellarator (I, > 0) shows “non-ideal 3-limit”

» SPEC has been used to assess whether or not magnetic islands and

chaos can emerge at high 3 in simple stellarators configurations.

l l

We studied “worst-case-scenario” of Can we extend the theory to more complex
maximum relaxation: how to incorporate the geometries and non-trivial pressure profiles?

possibility of pressure-induced island-healing?



Non-trivial pressure profile (low resolution)
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W7-X OP1.1 limiter configuration (low resolution)
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A This is not an experimental prediction. This simlpy emphasizes that the

equilibrium {3 -limit may be determined as in simpler geometries.
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